System Design Document Template

CMSC 345, Spring 2002

[image: image1]This template for this system design document (SDD) is adopted from the IEEE Software Engineering Standards Collection, IEEE Press and other SDD templates.

Title Page

· Name of document (refer to product, e.g., “System Design Document for the …”)

· Date

· Team member names

Table of Contents

· Give page numbers for each section

1. Introduction - Provide an overview of the SDD and a description of the scope of the software.

1.1. Purpose - define the purpose of this SDD and specify intended readership.

1.2. Scope - identify the software products to be produced by name; explain what the proposed software will do (and not do, if necessary); describe the relevant benefits, objectives and goals as precisely as possible; and be consistent with related higher-level specifications.

1.3. References - provide a complete list of all the applicable and referenced documents.

Minimally, a reference to the SRS goes here. If you used any other types of documents to arrive at this design (the Somerville text, documents provided by the client), list them here.

1.4
 Overview - describe what the rest of the SDD contains and explain how the SDD is organized.

1.5 Constraints – Briefly describe any restrictions, limitations or constraints that impact the design or implementation

2. System Overview - Briefly introduce the system context and design, and discuss the background to the project.

Put context diagram from SRS here to supplement the text.

3. System Architecture

3.1. Architectural Description – A block diagram showing major subsystems and the interconnections among them.

3.2. Component Decomposition Description – A decomposition of the subsystems that summarizes the software components.

Functional – Put data flow diagram (DFD) and structural decomposition diagram here.

OOD – Put object diagrams, sequence diagrams, hierarchy diagram and aggregation chart here. Each user-goal use-case in the SRS should have a corresponding sequence diagram. Include object state diagrams as appropriate.

3.3. Architectural Alternatives – Discuss other architectures that were considered.

3.4. Design Rationale – Discuss the rationale for selecting the architecture described in 3.1, including the critical issues and trade/offs that were considered.

4. Data Design

4.1. Database Description – Describe the database(s) which is/are part of the system.

4.2. Global Data Structures – Describe any data structures that are a major part of this system.

This should include major data structures that are passed between components. That is, it is not restricted to truly “global” data structures.

4.3. Data Dictionary – An alphabetic list of names used by the system (entities, types, services, relations, attributes). Include a description of the named entity. (See text section 7.3, page 158 for a discussion of data dictionaries).

Functional – Refer the reader to the structural decomposition diagram in Section 3.2.
OOD – Refer the reader to the object diagrams and aggregation chart in Section 3.2.

5. Component Design - A top-down description of the design components.

Functional – Put the function mini-specs (PDL descriptions) here. Relate them to the structural decomposition diagram in Section 3.2.

OOD – Put the PDL for the object member functions here. Relate them to the object diagrams in Section 3.2.

You may want to reorganize this section (5.1 – 5.7) to make it flow better. That is fine as long as all of the information below is presented in some manner.

5.1. Component identifier - An identifier unique throughout the SDD.

5.2. Purpose - A reference back to the requirements spec.

5.3. Function - What does the component do? Description of its processing.

5.4. Subordinates - The components used by this component.

5.5. Dependencies - Constraints placed on this component by other components.

5.6. Interfaces - Control and data flow into and out of the component.

5.7. Data - Descriptions of internal data.

6. Human Interface Design

6.1. Overview of the User Interface – Describe the general functionality of the system from the user’s perspective.

6.2. Screen Images – Screenshots showing the interface from the user’s perspective.

These can be hand-drawn or you can use an automated drawing tool. Just make them as accurate as possible. (Graph paper works well.)

6.3. Screen Objects and Actions – A discussion of screen objects and actions associated with those objects.

6.4. Report Formats – a description of major reports provided by the system.

These can be hand-drawn or you can use an automated drawing tool. Just make them as accurate as possible. (Graph paper works well.)

7. Requirements Matrix – provide a cross reference that traces components and data structures to the requirements
Use a tabular format to show which system components satisfy each of the functional requirements from the SRS. Refer to the functional requirements by the numbers/codes that you gave them in the SRS.

8. Resource Estimates - A summary of computer resource estimates required for operating the software.

9. Definitions, Acronyms, and Abbreviations - provide definitions of all terms, acronyms and abbreviations needed for the SDD.

Notes:

· The system architecture describes the structure of the solution to the problem given in the requirements specification. The solution is described in terms of the algorithms used to solve the problem, not in terms of how those algorithms are implemented (so you still can't mention C/C++/etc.). If the customer has implementation-specific requirements, they should be reflected in the system design constraints (Section 1.5).

A couple of checklists courtesy of Construx Software Builders, Inc. (modified slightly)

Architecture

[image: image2]
· Is the overall program organization clear, including a good architectural overview and justification?

· Are modules well defined including their functionality and interfaces to other modules?

· Are all the functions that are listed in the requirements covered sensibly, neither by too many nor too few modules?

· Are all major data structures described and justified?

· Are major data structures hidden with access functions?

· Is the database organization and content specified?

· Are all key algorithms described and justified?

· Are all major objects described and justified?

· Is the user interface modularized so that changes in it won't affect the rest of the program?

· Is a strategy for handling user input described?

· Are key aspects of the user interface defined?

· Are memory use estimates and a strategy for memory management described and justified?

· Is a strategy for handling I/O described and justified?

· Is a coherent error-handling strategy included?

· Are error messages managed as a set to present a clean user interface?

· Is a level of robustness specified?

· Are necessary buy vs. build decisions included?

· Is the architecture designed to accommodate likely changes?

· Is any part over- or under-architected?

· Are the major system goals clearly stated?

· Does the complete architecture hang together conceptually?

· Is the top-level design independent of the machine and language that will be used to implement it?

· Are motivations given for all major decisions?

· Are you, as a programmer who will implement the system, comfortable with the architecture?

Copyright © 1996-1998 Construx Software Builders, Inc.

High-Level Design

· Have you used round-trip design, selecting the best of several attempts rather than the first attempt?

· Is the design of the current subprogram consistent with the design of related subprograms?

· Does the design adequately address issues that were identified and deferred at the architectural level?

· Are you satisfied with the way the program has been decomposed into modules or objects?

· Are you satisfied with the way that modules have been decomposed into routines?

· Are subprogram boundaries well defined?

· Are subprograms designed for minimal interaction with each other?

· Does the design make sense both from the top down and the bottom up?

· Does the design differentiate between the problem-domain component, the user-interface component, the task-management component and the data-management component?

· Is the design intellectually manageable?

· Does the design have low complexity?

· Does the design keep the degree of component coupling as low as possible?

· Does the design keep the degree of component cohesion as high as possible?

· Will the program be easy to maintain?

· Does the design hold connections among subprograms to a minimum?

· Does the design account for future extensions to the program?

· Are subprograms designed so that you can use them in other systems?

· Will the design be easy to port to another environment?

· Is the design lean? Are all of its parts strictly necessary?

· Is the design stratified into layers?

· Does the design use standard techniques and avoid exotic, hard-to-understand elements?

Copyright © 1996-1998 Construx Software Builders, Inc.

